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I. INTRODUCTION AND SUMMARY

1.1 INTRODUCTION

Combustor liner durability is one of the major challenges in high pressure ratio turbopropulsion engines.
To resolve conflicting combustor performance requirements along with enhanced structural durability in
a cost-effective manner, conventional (empirical) combustor design techniques need to be complemented
by multidimensional aerothermal analysis.

To improve predictive capabilities of aerothermal models, NASA Lewis Research Center sponsored Phase
I aerothermal modeling activities (Sturgess, 1983; Kenworthy et al, 1983; Srinivasam et al, 1983") to assess

current state-of-the-art numerical schemes and physical models. The main objectives of aerothermal
modeling Phase II are

1. Develop advanced numerical schemes.

2. Collect benchmark quality experimental data to quantify interaction between dome swirlers and
primary jets.

3. Collect benchmark quality data for fuel nozzles and their interaction with dome swirlers.

4. Use advanced numerics and benchmark quality data to validate advanced aerothermal models.

Two advanced numerical schemes were developed by Karki et al (1988) under NASA HOST (Hot-Section
Technology) sponsorship. The experimental activities and model validation efforts for swirler-jet interac-
tion were conducted jointly at Purdue University and Allison Gas Turbine Division of General Motors
Corporation (Nikjooy et al, 1992). This report summarizes a joint Allison/University of California at
Irvine (UCI) effort on benchmark quality data and model validation for nozzle-swirler interaction for an
idealized nonreacting primary zone. The report consists of seven sections, including Section I, and three
appendices.

In Section II an overview of gas turbine combustor flowfield characteristics is presented. This is followed
by a description of idealized combustor flow model and an explanation of integrated model-
ing/experimental approach.

Section III presents the details of the experimental rig and instrumentation. This chapter describes the
test facility, flow systems, and various measurement techniques for single- and two-phase flows. Finally,
flow visualization, instrumentation, and data reduction results are presented.

In Section IV the experimental data are presented and discussed. This includes dome annular jets, pri-
mary jets, and dome annular jets and primary jets.

In Section V the problem of calculating turbulent flows is posed more precisely by introducing and dis-
cussing the averaged equations governing the mean flow quantities. The appearance of turbulent trans-
port terms in these equations makes apparent the necessity of introducing turbulence models. The mod-
els are discussed in order of increasing complexity. The details of the solution procedure adopted for the
highly coupled and nonlinear governing equations are explained next.

In Section VI the computational results are compared with experimental data. The results are presented
for the standard k-e model, algebraic second-moment (ASM) closure, and differential second-moment
(DSM) closure.

Finally, Section VII summarizes the main conclusions that emerged from this study and puts forward
some recommendations for future work.

* References for Section I are listed at the end of the section.



1.2 SUMMARY

A joint analytical/experimental investigation was conducted to provide benchmark quality data and as-
sess state-of-the-art turbulence and spray dynamics models that can be used to quantify the interaction
between fuel nozzle and dome swirlers. After taking into consideration a number of often conflicting re-
quirements, an axisymmetric test configuration was defined jointly by Allison Gas Turbine and the Com-
bustion Laboratory of UCI.

Benchmark quality data were taken to quantify effects of confinement and the pressure of glass beads on
the following configurations

single round jet

single annular jet

single swirling annular jet

coaxial jets

coaxial jets with swirling annular flow

Benchmark quality data were also obtained for a practical prefilming airblast nozzle and its interaction
with an annular jet.

Flow field predictions were also obtained using the three levels of turbulence models, namely k-¢, ASM,
and DSM closure. The modeled conservation equations were based on an Eulerian approach for the gas
(continuous) phase and a stochastic-Lagrangian approach for the dispersed (discrete) phase. In order to
reduce the effects of numerical (false) diffusion on the predicted results, a higher order numerical scheme,
namely the flux-spline differencing scheme, was employed.
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II. SELECTION OF EXPERIMENTAL CONFIGURATION
2.1 GAS TURBINE COMBUSTOR FLOW FIELD CHARACTERISTICS

Gas turbine combustion systems need to be designed and developed to meet many mutually conflicting
design requirements, including high combustion efficiency over a wide operating envelope and low NOx
emissions, low smoke and low lean flame stability limits and good starting characteristics, low combus-
tion system pressure loss, low pattern factor, and sufficient cooling air to maintain low wall temperature
levels and gradients commensurate with structural durability. The flow field around and within the
combustor liner (Figure 2.1-1%) is quite complex in that it includes swirl, regions of recirculation, field in-
jection, atomization, fuel evaporation, mixing, turbulent combustion, soot formation/oxidation, and con-
vective and radiative heat transfer processes. The phenomenological understanding of these processes is
not well established, and the relevant nonlinear coupled transport equations are difficult to solve.

The combustor design and development process has been empirically based with limited help from mul-
tidimensional calculations. A number of correlations have been used by combustor designers to help dur-
ing the design and development activities. Many researchers (Lefebvre, 1984 and 1985; Plee and Mellor,
1978 and 1979%) have proposed semiempirical correlations for gaseous emissions, smoke, lean blowout,
ignition, pattern factor, and combustion efficiency. Professors Lefebvre and Mellor have developed very
useful correlations that can be used for scaleup, for data correlations, and for providing some insight.
These correlations or their variants are being used by the gas turbine industry (Steele et al, 1987; Rizk and
Mongia, 1989).

The empirical /analytical combustor design methodology introduced by Mongia and Smith (1978) has
been used for designing a number of gas turbine combustors (Mongia, 1982; Mongia et al, 1986). The
multidimensional calculations provide a good understanding of combustor internal flow field and there-
fore can be used for guiding a combustor design process. However, because of incomplete understanding
of the various combustion processes and numerical diffusion, the three-dimensional calculations for
practical gas turbine combustors cannot be considered quantitatively accurate (Srinivasan et al, 1983;
Kenworthy et al, 1983; Sturgess, 1983). Some progress is being made in further improving the numerical
methods (Karki and Mongia, 1989), however more effort is needed to achieve the capability required for
accurately predicting combustor performance parameters including radial profile, combustion efficiency,
smoke and gaseous emissions, and wall temperature levels and gradients.

Although encouraging qualitative comparisons between data and calculations were achieved for the
practical combustors (Rizk and Mongia, 1991), it became quite clear that a significantly increased level of
effort is required to achieve the model accuracy required for providing definitive guidance during design
process. Moreover, each important process of combustion (e.g., turbulence, kinetics, turbulence/kinetic
interaction, spray, etc) should be investigated separately and in combination so as to improve fundamen-
tal understanding. Model calculations were, therefore, performed for existing data from simple to com-
plex flow under HOST sponsorship (Srinivasan et al, 1983) and the following main conclusions were
made

1. Improve phenomenological understanding of nonreacting flows relevant to those encountered in
gas turbine combustors.

2. Make benchmark quality measurements in critical areas of interest.

3. Undertake a systematic model validation effort to identify areas of further improvement.

* Figures for Section Il appear at the end of each subsection. The figure number identifies the subsection
in which the figure is discussed.

t References for Section II are listed at the end of the section.



% > YRR

adrg ¢ dd
anrredd

TES2-1347

Figure 2.1-1. Model predictions of flow field around and within combustor.



2.2 IDEALIZED COMBUSTOR FLOW MODEL

Measurements in sprays present formidable experimental difficulties. Aside from the dense spray region
near the injector, which is almost intractable, the dilute portions of the spray consist of drops of various
sizes traveling at various velocities and angles of flight. These drops interact with the turbulent structure
of the gas phase and this interaction controls the turbulent mixing evaporation and combustion processes
in the spray. At any given point in the spray, both gas-phase properties (mean and fluctuating velocities,
concentrations and temperatures, etc) and liquid-phase properties (drop size, velocities, liquid flux, etc)
need to be measured to validate spray models. Moreover, initial conditions of these properties, which in-
volve measurements in the dense spray regions, are needed as input for the separated flow category of
spray models.

In the following, measurements in solid-particle-laden jets (nonevaporating) are first considered. Such
flows have experimental advantages because they are amenable to detailed measurements of flow struc-
ture. These data are also useful to evaluate the hydrodynamic aspects of spray models. Recent mea-
surements of sprays are then discussed, highlighting the data which have the potential for evaluating
separated flow models.

2.2.1 Measurements of Solid-Particle-Laden Fl

Yuu et al (1978) report measurements in an air jet containing monodispersed particles (20 micron) injected
into still air. Measurements were made of mean gas velocities and particle concentrations. Particle quan-
tities were measured using an isokinetic sampling tube. McComb and Salih (1977 and 1978) reported
measurements for a gas jet with small particles of 2.3 and 5.7 micron diameter. The particle concentration
was studied using laser Doppler anemometer (LDA) techniques. The smaller particles act nearly like
tracer particles while the flow in this case approaches the locally homogeneous model limit.

The measurements of both Yuu et al and McComb and Salih were limited to very low particle loadings.
This implies that while gas flow influences particle dispersion, the effect of the particles on the structure
of the gas flow was small. Measurements at relatively high particle loading have been reported by Loats
and Frishman (1970) and Levy and Lockwood (1981). Significant effects of particles on the structure of
the gas phase were observed in these experiments.

Elghobashi and his coworkers (Modarress et al, 1982 and 1983) also present measurements in particle-
laden jets, with particle size of 50 and 200 microns. In contrast to the other measurements discussed
above, they provided information of initial conditions of both phases, although not in great detail. Pro-
files of mean and fluctuating velocities of both phases and Reynolds stress of gas phase were reported at
an axial location of 20 injector diameters downstream. Their study shows that the expansion rate of a
two-phase jet is smaller than that of a single-phase jet and that velocity fluctuations decrease as particle
loading increases.

Shuen et al (1985) have reported measurements in particle-laden jets. Properties were carefully character-
ized so that the measurements could be employed to evaluate separated flow models at the injector exit.
The structure measurements included mean and fluctuating velocities of both phases, gas-phase
Reynolds stress, and particle mass fluxes. Their study shows that effects of particle dispersion are impor-
tant under their test conditions.

Bulzan (1988) conducted both experimental and computational studies to investigate weakly swirling,
particle-laden turbulent flow. In order to establish baseline data for the particle-laden jets, single-phase
flow measurements with swirl numbers ranging from 0 to 0.33 were performed. Experiments were also
conducted for turbulent jet flow of air with glass beads. The beads' diameters were 39 microns and were
injected with a mass loading ratio of 0.2 (the ratio being the mass flow rate of particles per unit mass flow
rate of air). Predictions were obtained using the standard k-¢ model with curvature correction for contin-
uous phase and three different methods, namely, locally homogenous flow (LHF), deterministic sepa-



rated flow (DSF), and stochastic separated flow (SSF) using the Lagrangian technique for dispersed
phase.

Hardalupas et al (1989) conducted an experimental study to quantify the velocity and flux characteristics
of the spherical glass beads and of the gas phase in the presence of the beads as a function of bead diame-
ter and of the mass loading ratio. The measurements were taken for the velocity and flux of particles with
nominal diameters of 200, 80, and 40 microns in a round, unconfined air jet. The presence of the particle
phase in a free jet of air causes reduction of the rate of the axial gas velocity and of the jet radial spread
because of momentum transfer from the discrete to the gaseous phase. The axial turbulence intensity of
the glass beads and the gas phase were comparable and both decreased with increasing loading ratio and
the rate of spread of the jet increased with an increasing loading ratio.

2 Measurements in Spra

There have been several studies conducted on the structure of combusting sprays (Faeth, 1979 and 1983;
Chigier, 1977; Gosman and Johns, 1980; El Banhawy and Whitelaw, 1980 and 1982; Mao et al, 1980 and
1986; Onuma and Ogassaare, 1975 and 1977; Chigier and Roett, 1972; McCreath and Chigier, 1973;
Hutchinson et al, 1977; Fonti et al, 1979). It was often concluded that the liquid-fuel spray feeds a diffu-
sion-type flame surrounding a region of reverse flow and that drop evaporation is the controlling mecha-
nism in the combustion process. Most of the studies also revealed that an increase in mean drop diameter
was associated with a reduction in combustion intensity at the region immediately downstream of the
fuel injector and, in particular, at large radii. The extent of this effect was found to increase when inlet
swirl number decreases.

The measurements of gas-phase properties and overall flame structures abound in combusting spray
studies. However, the droplet properties at the nozzle exit, i.e., velocity, size, and concentration, were ab-
sent from nearly all existing measurement, until recently. With this vital information provided by recent
experiments, no real progress can be achieved in the development and evaluation of combusting spray
models.

Popper et al (1974) present measurements in a nonevaporating turbulent jet. The motion of oil droplets
(diameter less than 50 micron) in a round turbulent air jet injected from a 25 mm diameter nozzle was
studied by means of an laser Doppler velocimeter (LDV). Droplet sizes were not accurately determined,
the loading of the dispersed phase was extremely low, and only mean velocities of the two phases were
recorded. Therefore, this study does not permit complete evaluation of spray models.

Onuma and Ogassaare (1975 and 1977) used flow perturbing probes (e.g., thermocouple, pitot tube, emis-
sions sampling probe, etc) to conduct a phenomological investigation on the combustion of kerosene and
heavy fuel from an air atomizing injector. They concluded that most of the droplets did not burn indi-
vidually. The vapor cloud from the droplets burned as turbulent diffusion flame.

Yule et al (1982) present measurements in nonevaporating and evaporating fuel sprays at different condi-
tions. A twin-fluid atomized kerosene spray was injected into a coflowing secondary stream of air which
could be preheated. Information on drop sizes and mean drop and gas velocities were provided. How-
ever, all the spray conditions studied involved very small drops, e.g., the mass mean droplet diameters
were 10-30 microns in the major portion of the spray. Hence, it could be assumed that the droplets
closely follow the local gas-flow field after their initial acceleration. This condition does not adequately
represent a practical spray where appreciable slip between the large drops and the gas phase can exist
even far downstream.

Shearer et al (1979) present measurements of the structure of an evaporating Freon-11 spray having ap-
proximately 30 micron Sauter mean diameter (SMD). However, the spray model that was examined in-
volved application of the locally homogeneous flow (LHF) approximation which only precisely repre-
sents a spray consisting of infinitely small drops. Predictions of the LHF model overestimated the rate of



development of the spray, indicating the need for a separated flow treatment of practical spray processes.
Since an LHF model was evaluated in the study, no attempt was made to measure individual drop veloc-
ities or investigate the evaluation of drop sizes, which are important factors during evaluation of sepa-
rated flow models.

Tishkoff et al (1982) have reported measurements for evaporating sprays. The system studied was an n-
heptane spray from a solid cone atomizer which was injected into a low velocity, coaxial flow of air. The
spray plume shape was studied using photographic, shadowgraph, and light-scattering techniques. In
addition, droplet size distributions, liquid-phase volume fractions, and vapor concentration measure-
ments were also made at two axial locations.

As an extension of the same study, Tishkoff (1982) measured correlations of drop size and velocity using
an imaging technique. However, initial drop velocities and sizes for the injected liquid were not mea-
sured. In both studies, gas-phase mean and turbulent velocities were not measured; therefore, neither the
overall rate of development of the spray nor the turbulent dispersion and evaporation of drops can be
definitely assessed.

Spray characteristics including droplet size and velocity distributions can have profound effects on flame
structure (Styles and Chigier, 1977) and so does the surrounding air jet velocity (Miutani et al, 1977). Al-
though most of these measurements (Faeth, 1979 and 1983; Chigier, 1977; Gosman and Johns, 1980; El
Banhawy and Whitelaw, 1980 and 1982; Mao et al, 1980; Onuma and Ogassaare, 1975 and 1977; Tishkoff,
1982; Chigier and Roett, 1972; McCreath and Chigier, 1973; Hutchinson et al, 1977; Fonti et al, 1979; Pop-
per et al, 1974; Yule et al, 1982; Shearer et al, 1979; Tishkoff et al, 1982; Styles and Chigier, 1977; Miutani et
al, 1977) improved the fundamental understanding of spray flow interaction, the available data did not
provide the detailed information needed for validation of spray models.

Foster et al (1991) studied the dispersion and evaporation of liquid droplets in nonisothermal, turbulent
flow fields. In their investigations, an ambient temperature airstream was seeded dilutely with water
droplets and brought into contact with a heated stream of air at a higher velocity in a two-dimensional
mixing layer configuration. Foster et al applied measurement techniques based on light attenuation and
scattering to unveil some of the qualitative features of dispersion and evaporation.

Brena de la Rosa et al (1992) investigated the behavior and structure of a liquid spray immersed in a
strong swirling field. They measured the properties of the dispersed phase, such as velocity and size dis-
tribution, as well as the mean velocity and turbulence properties for the gas phase.

Chehroudi and Ghaffarpour (1991 and 1992) studied a hollow-cone spray generated by a pressure-swirl
fuel nozzle. A phase Doppler particle analyzer was used to measure drop size, drop velocity, and size
distribution. Hassa et al (1992) also utilized a research airblast atomizer/combustion chamber configura-
tion to measure gas and drop velocities in the confined swirling isothermal flow for the validation of a
mathematical model of two phase flows in a gas turbine combustor.

Zurlo et al (1991) measured the spatial distribution of droplet mean size and number density from a hol-
low-cone kerosene spray. They carried out the measurement using three different droplet sizing tech-
niques, ensemble scattering / polarization ratio, phase/Doppler interferometry, and light intensity decon-
volution. Fairfield et al (1992) also examined the effect of swirl on droplet transport processes in a pres-
sure-atomized, hollow-cone kerosene spray injecting into coflowing nonswirling and swirling air flow
fields. An ensemble light scattering/polarization ratio technique was applied to measure the local values
of droplet mean size and number density in dense regions of the spray. Measurement of droplet size and
velocity distribution was carried out using a phase Doppler interferometer.

Wang et al (1991) examined droplet dynamics of a model combustor swirl cup in the absence of reaction.
Droplet axial, radial, and tangential velocities, as well as size, were measured using phase Doppler inter-
ferometry. Wang et al (1992) investigated the effect of scale on the behavior of the continuous phase and



droplets by comparing the continuous phase velocity and droplet size and velocity at geometrically anal-
ogous positions.

The dispersed-phase structure of the dense spray was studied by Tseng et al (1992) for atomization break
up conditions. They investigated the break up of water jets in still air at various ambient pressures. Drop
sizes and velocities and liquid volume fractions and fluxes were measured using holography.

Solomon et al (1984a and 1984b) present some comprehensive measurements of the detail structure of
nonevaporating and evaporating sprays. Both fine and coarse sprays were studied, with diameters of 30
and 87 microns for nonevaporating sprays and 31 and 58 microns for evaporating sprays. Experiments
considered axisymmetric sprays produced by an air-atomizing injector directed vertically downward in
still air. The spray structure measurements included mean and fluctuating gas velocities and Reynolds
stresses, drop sizes, and velocities, mean liquid fluxes, and mean gas-phase temperatures. Initial condi-
tions were carefully characterized to provide an appropriate data base for the evaluation of spray models.
These data have been employed for the evaluation of typical spray models and the results indicate that
the effects of turbulence on drop dispersion and evaporation are important.

The brief review above indicates that a few measurements useful for evaluation of noncombusting spray
models are available. The majority of these data involved oversimplified flow configuration, i.e., ax-
isymmetric jet flows with no zones of recirculation. This arrangement has certain advantages in terms of
experimental effort to map the flow field and in obtaining accurate numerical solutions with mathemati-
cal models. In a gas turbine combustor, however, spray structure is significantly influenced by swirl, re-
circulation, streamline curvature, and secondary jets. A decisive evaluation of practical spray models
would have to address the aerodynamic effects of these complications. Unfortunately, measurements
which provide detail structure information of both phases as well as injector properties are not available
in the literature.

Spray model evaluation has generally lagged behind model development due to the lack of systematic
measurements in sprays. There has been no comprehensive study of the structure of evaporating sprays
in practical gas turbine combustor geometries. New measurements of this kind are most urgently needed
in current spray research work. Until this need is fulfilled, the goal of developing a spray model as a reli-
able design tool cannot be achieved.
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2.3 INTEGRATED MODELING/EXPERIMENTAL APPROACH

A 2-D elliptic code that incorporates spray dispersion model is used to determine the significant experi-
mental variables. These variables include both geometric and flow parameters. The calculations are per-
formed to establish significant variables for the experimental programs, and to determine areas of strong
velocity gradients where measurements would want to be taken. Since the purpose of this program is to
obtain benchmark quality data with which to verify 2-D turbulence/spray models, it is necessary to in-
volve the 2-D models in the selection of the experimental configurations. Before the proposed experimen-
tal configuration was selected, a number of preliminary cases were computed. The calculations are made
for the two-equation k-¢ model. There are several reasons for not using advanced turbulence models.
First, these are only illustrations used to help select the experimental configuration. Secondly, the results
are obtained with a relatively coarse grid. Since these calculations are not grid independent there is an
excessive amount of numerical diffusion, thus obscuring the advantages offered by advanced models.

2.3.1 Air-Swirler Characterization

The flow and geometry test conditions for this study are shown in Figure 2.3.1-1. The primary tube has a
diameter of 1in. and negligible wall thickness. The primary tube is surrounded by a swirler with a hub
diameter of 11in. and a tip diameter of 1.5 in. The flow undergoes a sudden expansion to the outer tube
with a diameter of 3 in. and length of 15 in.

The parameter selected for sensitivity analysis in this study is the mass flow rate (or the inlet velocity) in
the primary coaxial tube. Two cases with mp/mg of 0.01 and 0.06 were run to study the characteristics of
the air-swirler and its interaction with the primary particle-laden jets.

The first case has a small amount of air flowing through the primary tube and basically represents a pure-
swirling flow. The calculated results, as shown in Figure 2.3.1-2, indicate a recirculation zone formed
near the exit of the swirler. A stagnation point with axial distance of 9 in. is found along the centerline of
the tube. The results show considerable radial gradients in the profiles at the tube outlet. This did not
cause any convergence problem.

The second case has a larger mp (= 0.06 ms) and was run to illustrate the effect of the nozzle airflow on
the main swirler induced flow field. The calculated results are shown in Figure 2.3.1-3. The flow struc-
ture of this case is similar to that of the first case. The size of the recirculation zone is slightly smaller.
The distance between the two axial stagnation points is also shorter, 8.0 in. versus 9.0 in. These interest-
ing observations indicate significant influence of the injector air on the combustor recirculation patterns.

2.3.2 Fuel Injector and Injector Air Characterization

The flow and geometry test conditions for this study are shown in Figure 2.3.2-1. The primary tube has
an inside diameter of 0.394 in. and wall thickness of 0.106 in. The primary tube is surrounded by non-
swirling secondary tube with a diameter of 3 in. Four cases were run to study the characteristics of the
fuel injector. The initial spray particle size distribution is arbitrarily assumed and tabulated as follows

Particle
group number Size (microns) Mass fraction (%)
1 15 0.62
2 25 20.00
3 40 30.00
4 55 30.00
5 80 19.38
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For the first test case the primary stream (injector) airflow rate is 6% of the secondary (main) stream air-
flow rate, i.e., mpg = 0.06 ms. No particles are injected in this baseline configuration. The main stream
and injector air have no swirl. Injector air and main stream flow interaction is shown in Figure 2.3.2-2,
wherein velocity vectors, streamlines, isopleths of radial velocity, axial velocity and turbulence kinetic
energy levels are plotted. Other than a small wake caused by the simulated nozzle shroud, there is no re-
verse-flow region in this case. The high-velocity injector jet is decayed slowly as shown in Figure 2.3.2-2.
The corresponding increase in turbulence kinetic energy is indicated in Figure 2.3.2-2.

The second case includes nonevaporating spray particles in the injector with fuel-to-air ratio equal to 1.0.
The particle inlet velocity is assumed to be twice the primary tube (injector) gas inlet velocity; spray par-
ticle diffusion due to turbulence is ignored. The calculated results are shown in Figure 2.3.2-3.

The width and the penetration depth of the injector gas are larger in the second case than in the baseline
case. This finding indicates that the particle inlet velocity also has an effect on the turbulent flow field
(see streamlines on Figures 2.3.2-2 and 2.3.2-3). The results also show that the rate of particle spreading is
dependent on particle size.

The effect of turbulence on particle diffusion is illustrated in the third case. This case includes correction
of gas turbulent diffusion rates due to the presence of particles. The calculated results shown in Figure
2.3.24 indicate that injector-air jet width and penetration depth (compare Figures 2.3.2-3 and 2.3.2-4) are
increased noticeably by including correction of the gas turbulent diffusion due to the presence of parti-
cles.

The last case of this study is also designed to explore the effect of turbulent gas dynamics on spray parti-
cle motion. This case, however, assumes the particle motion is mainly due to bulk aerodynamic particle
drag. The gas turbulent diffusion flux has no contribution to the particle motion, but the presence of par-
ticles has an influence on gas turbulent diffusion. The calculated results, as shown in Figure 2.3.2-5, are
comparable with those in the third case (Figure 2.3.2-2). This comparison demonstrates that the rate of
particle spreading is lower in this case than previously calculated.

3. mbination Fuel-Inj r Air-Swirler Characterization

The flow and geometry test conditions for this study are shown in Figure 2.3.3-1. The analytical calcula-
tions were performed with the primary tube (injector) internal diameter as a parameter. The shroud di-
ameter of 1in. was kept constant. The injector is surrounded by a swirler with a hub diameter of 1 in. and
a tip diameter of 1.5 in. The flow undergoes a sudden expansion to the downstream tube with a diameter
of 3 in. and length of 15 in. The parameters selected for sensitivity analysis in this study are the spray
particle phase, correction of gas turbulent diffusion due to particles, and the primary tube diameter. For
each primary tube diameter, three cases were run to study the characteristics of the combination fuel-in-
jector/air-swirler.

Figure 2.3.3-2 shows the calculated results of the baseline case for the primary tube diameter of 0.394 in. (1
cm). This baseline case does not include spray particles in the primary tube. The flow test conditions are
similar to the second case in the Air-Swirler Characterization Study. The flow structure is characterized
by a recirculation zone formed near the exit of the swirler. The axial distance between two stagnation
pointis 7 in. The turbulent flow is not fully developed at the outlet of the tube. This is due to the fact that
the tube length selected is not long enough to have fully developed turbulent flow. These findings again
indicate that the effect of the initial velocity of the primary jets on the turbulent flow field is significant.

Figure 2.3.3-3 shows the calculated results of the case including spray particle phase in the primary jets
(mpg/mg = 0.06 and mpp/mg = 0.06). In this case, particle diffusion due to turbulence is not considered.
The presence of particles with the specified inlet conditions, as mentioned in the Fuel-Injector Characteri-
zation Study, is found to decrease the size of the recirculation zone. It also shortens the axial distance
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between two stagnation points, 4.2 in. versus 7.0 in. The turbulent flow is not fully developed at the out-
let of the tube. The results of particle number density contours show that the state of spray particle
spreading is dependent of particle size. Bigger particles have a lower rate of spreading. The particle
number density contours, as shown in Figure 2.3.3-3, are compared with those in Figure 2.3.2-3. This
comparison demonstrates the effect of swirling flow on particle spreading. The swirling flow can carry
the spray particles into the recirculation zone and increase the rate of particle spreading.

The last case for the primary tube diameter of 0.394 in. is designed to study the effect of turbulence on
particle diffusion. The flow and geometry test conditions for this case are similar to those of the previous
case. The calculated results, as shown in Figure 2.3.34, are compared with those in Figure 2.3.3-3. The
comparison indicates that primary jet width and penetration depth are increased significantly by includ-
ing turbulent diffusion.

To do further investigation on the flow interaction between an injector and swirling flow, the injector in-
ternal diameter is reduced to 0.197 in. (0.5 cm) in this case. The flow test conditions in this case are similar
to the baseline case in this study. The calculated results, as shown in Figure 2.3.3-5, are compared with
those in Figure 2.3.3-2. This comparison indicates that the size of the recirculation zone is smaller in this
case. The axial distance between front and rear stagnation points is also shorter, 5.8 in. versus 7.0 in. The
turbulent flow is not fully developed at the outlet of the tube.

Figure 2.3.3-6 shows the calculated results for spray particles in the injector with fuel-to-air ratio of 1.0. In
this case, the particle dispersion due to turbulence is not included. The flow test conditions in this case
are similar to the second case in this study. The calculated results, as shown in Figure 2.3.3-6, are com-
pared with those in Figure 2.3.3-3. This comparison again indicates that the effect of the initial velocity of
the primary jets on the turbulent flow field is significant. In this case, the stagnation points cannot be lo-
cated along the centerline of the tube; this is because both gas and particle inlet velocities in the primary
tube are much bigger. The comparison also shows that the swirling flow cannot effectively carry the
spray particles with very big inlet velocity into the recirculation zone and the rate of particle spreading is
lower in this case.

The last case of the Combination Fuel-Injector/ Air-Swirler Characterization Study is designed to investi-
gate the effect of particle dispersion due to the diffusion for the above case. The calculated results, as
shown in Figure 2.3.3-7, should be compared with Figure 2.3.3-6. Calculations demonstrate that primary
jets width and penetration depth are increased significantly by including turbulent diffusion.
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Figure 2.3.1-1. The flow and geometry test conditions for air-swirler characterization study.
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Figure 2.3.2-1. The flow and geometry test conditions for fuel-injector characterization study.
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l 15.0 in. 1
Mpg = Air mass flow rate in the primary tube
Mpp = Spray particle mass flow rate in the primary tube
ms = Air mass flow rate in the swirler
Dp = Primary tube diameter
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Swirl No. = 1.46
Swirler angle = 60 deg
mg = 0.062 1bm/sec
Primary tube—Air with or without spray particles
Mpp/ms = 0.06
Mpg/Ms = 0.06
Dp = 0.394 in. and 0.197 in. TEB4-1740

Figure 2.3.3-1. The flow and geometry test conditions for combination fuel-injector air-swirler
characterization study.
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[1I. EXPERIMENTAL TEST FACILITY AND INSTRUMENTATION

This section describes the experimental hardware developed in support of the program. Section 3.1 de-
scribes the test chamber, the hardware and supporting facility associated with it, as well as positioning.
Section 3.2 discusses materials used for the dispersed phase. Section 3.3 discusses the flow systems asso-
ciated with the facility. Instrumentation and the supporting computational hardware are described in
sections 3.6 through 3.12.

It is noteworthy that the entire facility was disassembled and moved from one location to another during
the testing in June 1988. The majority of the nonevaporating tests were conducted prior to the move and
the majority of the evaporating tests were conducted after the move. Tests of repeatability indicated that
the move had no impact on the performance of the diagnostics or the facility. Examples of such tests are
found in Section IV.

3.1 TEST FACILITY

In order to meet the program objective, several requirements were established for the test facility. First,
the inlet and boundary conditions must be controlled to a high degree. Second, versatility is required to
provide a variety of configurations against which to check predictions. To this end, two confinement
configurations, three degrees of swirl, and two modes of discrete phase injection were included. The fol-
lowing sections describe the final design and discuss the development of that design.

3.1.1_Unconfined Geometries

A schematic of the unconfined environment used for the testing is shown in Figure 3.1.1-1". The injector

is centrally located within a 457 mm?2 (18 in.2) assembly constructed from 19 mm (0.75 in.) aluminum
bars. The sides of the assembly are open to the surrounding environment down to an exhaust plenum
formed by panels mounted on the assembly. In turn, the assembly is isolated from the room by a Plexi-
glass wall and plastic tarp assembly. The Plexiglass walls form a 990 x 990 x 1220 mm(39 x39 x 48 in.)
chamber. The plastic tarp seals from the tops of these walls to the upper part of the injector assembly and
from the lower edge of the walls to the chamber exhaust plenum, effectively creating a room within a
room. A flexible seal was required to permit traversing of the test assembly. Injected air is removed from
the exhaust plenum via two outlets located symmetrically on opposing sides near the bottom of the
plenum. A pressure tap between the legs is used to ensure equal draw through each.

The exhaust is adjusted so that the total pressure within the Plexiglass/tarp assembly is nominally atmo-
spheric. The reason for this seemingly complex establishment of an unconfined environment is two fold.
First, simpler, more typical unconfined environments established by the use of a large tube (Modarress et
al, 1984%) (if ambient flow rate is desired) or a screened enclosure (Solomon et al, 1985) were dismissed
through a collaborative effort with Allison, which determined that recirculation would be present near
the wall at the point of injector impingement. Second, the later approach did not permit the monitoring
of entrained air, nor could the effect of this air be studied via velocity measurements.

3.1.2 Confined Geometrics

To provide data in an environment representative of a can combustor configuration, a confined duct 152.4
mm (6 in.) in diameter is utilized. This configuration is shown in Figure 3.1.2-1. The injector assembly
resides centrally within the 152.4 mm duct. Entrainment flow is injected at the top of the duct to help re-
duce back flow of air and spray within the duct. The amount of air used was determined via a series of

* Figures for Section IIl appear at the end of each subsection. The figure number identifies the subsection
in which the figure is discussed.
T References for Section 111 are listed at the end of the section.
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tests as described in section 3.4.4. Flow straighteners are utilized to provide an even plug flow through
the duct. In addition, the exhaust plenum is modified to seal near the bottom of the duct. In this way, the
pressure inside the duct can be monitored and used to determine the amount of exhaust necessary to
clear the flows input to the duct.

Measurements within curved ducts using optical techniques are challenging due to the impact of curva-
ture on the laser beams. For the Plexiglass tube used in the present study, the distortion is significant
over a wide part of the measurement domain as shown by Figure 3.1.2-2. This is especially true of the
beams used to measure the radial velocity.

What is difficult to see in Figure 3.1.2-2 is that a displacement of more than 50 microns between each
probe volume (for the beam waists used in this study) results in an invalid coincident measurement. This
invalidates two-component measurements in all but the innermost 10 mm of the duct radius without re-
alignment at each point. In addition, along the x traverse (needed for measurement of the azimuthal ve-
locities) the fringe spacing, and thus the velocity measurement, varies by 3%. Thinner material could
have been utilized, but this would still not eliminate the problem. Also, the need to make size measure-
ments further limits the ability of the instrument to perform in a cylindrical duct.

Hence, in the present case, optical access is provided by two flats in the side of the duct located at the op-
tical height (Figure 3.1.2-3). These flats are required to ensure coincidence of both beam crossings used
for velocity measurements. The receiving optics also utilize an optical flat. This option was selected over
an open port approach because of the difficulty of balancing the exhaust to prevent an influx or outflux of
mass through the ports. Such a phenomena would be intractable for the modeler to represent simply. It
was more straight forward to seal the duct completely and to adjust the optical flats in order to provide
minimum disturbance to the flow inside the duct. Figure 3.1.2-3 shows the cross section of the optical
port section of the confined duct. To reduce the impact on the flow, the flat size was minimized, resulting
in the measurement domain shown in Figure 3.1.2-3.

Use of the duct increased the amount of randomly scattered laser light and, as a result, the signal-to-noise
ratio for the phase/Doppler system was considerably lower than in the unconfined case. Figure 3.1.24
shows the effect of the increased noise on the measurement of velocity. When measuring the gas phase
velocity in the presence of particles (described in section 3.7), the voltages required to provide sensitivity
for the seed particles enables light randomly scattered by the particles and reflected by the Plexiglass sur-
faces to be detected as well, causing errors due to noise. The measured velocity of the particles is not af-
fected by the noise since the signal is very strong. The measured single-phase velocity is not affected be-
cause the seed particles do not cause a strong random scatter and, as a result, the noise levels are signifi-
cantly lower. The voltage range needed to give the proper velocities (less than 500 volts) for the gas
phase in the presence of beads led to sampling times which are too long for the data needed (5 Hz at 500
volts).

Subsequent blackening of the interior surfaces and higher quality antireflectance coated optical ports in-
creased the signal-to-noise ratio by a factor of 20 and provided a much wider range over which the volt-
age could be set to measure velocities of both phases at reasonable data rates.

.1.3 Positionin

There are two means by which to map out spatially-resolved measurements. Either the experimental
hardware or the optical diagnostics can be moved. It is advantageous to move the experimental hard-
ware and leave the optics fixed because this provides better maintenance of optical alignment. Also, the
need for three degrees of freedom would require sophisticated mechanisms for provision of motion from
the optics. Thus, the optics remain fixed, and the hardware itself is moved in the present case.

A schematic of the traversing system is shown in Figure 3.1.3-1. The horizontal motions are provided by
perpendicular lead screw (12.5 mm [0.5 in.]) mechanisms. The vertical positioning is provided by a lead
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screw attached to the nozzle fuel/air delivery tube. The two horizontal lead screws are designed to pro-
vide 550 mm of travel (the full extent of the cutout), and the vertical traverse provides 500 mm of travel.

Often, mechanical counters are utilized to provide feedback about position (e.g., Jackson, 1985). For the
purposes of this study, inaccuracies associated with mechanical counter backlash and hysterisis could not
be tolerated. As such, each direction of travel is complemented by an optical linear encoder. Thus com-
puter control is afforded to the facility. Values of position are read out digitally (Mitutoyo Model No.
GML-3705T) to the nearest 5 microns. This spatial resolution is very critical in situations where high gra-
dients in the parameters of interest exist. The Mitutoyo readout is interfaced to the IBM AT used for data
acquisition so that the location of each data point is recorded with the data acquired. A schematic of the
interface is shown in Figure 3.1.3-2. A further extension of the system calls for installation of motor con-
trollers which will enable the system to be traversed remotely by the user all by computer. This aspect of
the traverse was not implemented during the program.

3.14 Diagnostics Table

The table from which all hardware and optical diagnostics are supported is shown in Figure 3.1.4-1. The
diagnostics are discussed in sections 3.5 through 3.11. The 5 ft x 10 ft Newport Research Corporation
table (custom design) provides stable operation with a maximum of vibration isolation to reduce errors
due to beam wandering. In addition, vibration can lead to uncertainties in the position of the test article
with respect to the optical probe. The table utilized in the experiment provides for minimum error due to
this phenomena.
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3.2 MATERIALS FOR THE DISPERSED PHASE

This section discusses the materials selected for the dispersed phase, in this case, glass beads and
methanol. Reasons for the selection of the materials are outlined, as are the procedures utilized to opti-
mize quality and eliminate ambiguity due to problems associated with the materials themselves.

2.1 Gl a

The reason for inclusion of configurations utilizing glass beads is to provide cases representing either
monosized or bisized, nonevaporating "spray" fields. As such, beads of uniform shape and properties
with a narrow size range were required.

To acquire beads with an acceptably narrow size range, two options were available: purchasing high
quality beads or narrowing the size range of an inferior quality bead by an inexpensive means of classifi-
cation. The cost of the high quality beads was too great in comparison to classification. Hence, medium
quality beads were obtained from the Cataphote Division of Ferro Corporation (Class IV, nominal +/- 15
microns). An example of these beads "as received" is shown in Figure 3.2.1-1 (a).

The classification procedure is based upon weight and drag, and separates sizes of uniform material to a
+/- 5 micron size range. Figure 3.2.1-1 (b) also shows the effectiveness of classification. Classification is
also a convenient method for reoptimizing beads that have been contaminated or for some other reason
fall below the desired level of quality.

The size ranges selected for the beads were based upon two criterion. It was desired that discrimination
between the two sizes selected and the seed particles could be maintained and the sizes used were repre-
sentative of typical drop sizes produced by an air-blast atomizer. Using these criteria, size ranges of 20-30
microns and 100-110 microns were selected.

Owing to the theory behind the phase technique, the discrimination between the two different sized
beads is not perfect. This is due to the requirement that the scatterer be spherical and of homogeneous
properties. Figure 3.2.1-1 (a) shows particles which are ellipsoidal, cracked, or which have bubbles de-
spite the air classification. These types of particles lead to broadening of the measured size distribution.
It is noteworthy that the instrument is not expected to size the glass beads properly. It is required to dis-
tinguish between the size classes on the histogram produced. Figure 3.2.1-2 (a) shows a typical distribu-
tion obtained for the two sizes when mixed together. Clear separation is evident between the data ob-
tained for each size. Note in Figure 3.2.1-2 (b) that there is little deviation in mean velocity within a given

size group, indicating that the classification process has given good results. Post-processing is then used
for the calculation of statistics for each size group.

Careful consideration was made in the selection of the liquid used in the studies of spray fields.
Methanol (CH30H) was selected for several reasons.

In order to incorporate the modeling of evaporation, a primary challenge for modelers, a fluid having a
high vapor pressure was required. This can be achieved by several methods, such as using a heated envi-
ronment. However, in order to run long tests, this becomes expensive. As a result, it was desired to uti-
lize a fluid which has a high vapor pressure at normal room temperatures and pressures. Methanol
meets these needs in addition to providing several other positive features.

Methanol possesses a simple chemical structure which affords its availability in high purity and at a rea-
sonable cost. In addition, methanol vapor has nearly the same density as air (1.32 versus 1.2 kg/m 3)
which enables the effects of buoyancy to be eliminated and the effects of vapor diffusion and convection
to be simulated as a homogeneous, continuous phase without regard for density gradients. Further, in-
dividual droplet temperature effects are reduced by introducing the methanol at -10°C, which is the equi-
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librium or saturation temperature of methanol in air at STP. This value was determined through analysis
by Allison and verified through wet bulb/dry bulb experiments. By injecting the methanol at -10°C, the
liquid temperature remains constant throughout evaporation. Also to be considered is the temperature of
the air, which will drop owing to evaporation of the methanol. This problem is exacerbated by the injec-
tion of chilled methanol, since even more heat will be drawn from the air. The worst case can be consid-
ered where the air is cooled to -10°C. In this case, the density of the surrounding air will be less than the
injected air by 12 percent. In reality, however, the mixing of the different air streams will be rapid and
the effects of buoyancy due to thermal gradients will be less than this.

Methanol was obtained from Fischer Scientific (Certified ACS: Catalog No. A412).
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Figure 3.2.1-1. Monosized glass beads.
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3.3 FLOW SYSTEMS

Figure 3.3-1 illustrates the flow system for the spray facility. Each component of the flow system plays an
important part in the generation of a carefully defined and controlled flow field. The need to select and
add flows in various manners prescribed by the test protocol requires a high degree of sophistication in
the design of the flow system. The flow system can be broken down into four primary components: air
delivery, methanol delivery, glass bead delivery, and the exhaust system.

.1_Air Deli

In the original facility location, dry air (8% relative humidity) is provided to the facility at the house pres-
sure of 585 kPa (85 psig). Itis first passed through a Hankinson Centriflex separator/filter (Model No.
3405-1) and a Hankinson Aerolesce Coalescing oil removal filter (Model No. 1306-1) to ensure the re-
moval of all particulate and oil. The air is then passed through a two-stage pressure regulator (Norgren
Model No. 11-042-045). This is required to minimize pressure fluctuations in the house air which can lead
to slight changes in the delivered air flow rate (+/- 1%). At the second experiment location, the air was
not as dry (relative humidity about 20%) and was maintained at 1035 kPa (150 psig). An additional pres-
sure regulator was added to bring this supply down to 585 kPa. The air was then run through the same
filter bank as described above.

Clean, dry air is required for two reasons. The first is to prevent condensation of moisture inside the var-
ious metering devices. The second reason is to ensure that the cold methanol does not create fog due to
the condensation of water vapor in the air. This was expected to be a problem in the confined duct when
the windows cooled below the dew point, and is discussed is section 3.3.3.

From here, the air is split into the various required circuits. There are 10 circuits which are supplied with
filtered regulated air. These are split off in the order of greatest demand. The highest flowing circuits are
split first and the least flowing last. In this way, line losses become less of a factor in the amount of air
delivered. Each of these circuits will be discussed in order. Table 3.3-I shows the specifications for the
various circuits.

n Air Circuit

This circuit provides air to the Plexiglass enclosure. The air passes through a pressure regulator and a

19.05 mm (0.75 in.) critical flow orifice. The flow is regulated by a throttling valve (Lunkenheimer Model
No. 2140-1). Pressure taps are placed in the line on either side of the orifice and the deflection of red oil is
used to determine flow. After the valve, the air enters a 63.5 mm (2.5 in.) hose which carries the air to the

Plexiglass structure. The hose splits and each half carries part of the air to either side of the Plexiglass
structure.

Figure 3.3.1-1 shows the manifold into which the air is then dumped. The manifold is designed to dis-
tribute the air evenly within the structure. This is achieved by utilizing different sized holes in the mani-
fold and directing them upwards away from the flow field being studied. The two hole sizes were picked
to generate different amounts of penetration into the structure. This combination of upward directing
and varying penetration provides good mixing of the air and creates the necessary quiescent environment
for accurate boundary conditions. Coupled with the exhaust system, the air provided to the Plexiglass
structure defines the environment into which all the flows are injected.
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Table 3.3-1.
Flow system circuit specification.

Calibrated Maximum flow
Pressure regula-  pressure rate at calibrated Operating
ircui tor kPa (psi) Valve Rotometer? pressure flow
(kg/sec®  (kg/seclP
Methanol — — part of ro- Sho-rate 33x103 21x103
liquid® tometer 1355-8506 (carboloy ball)
Tube #
R-2-15B
Seeder air
Nebu Norgren 207 (30)  part of Sho-rate 1.1x104 1.0x 104
lizer #R07-200- rotometer 1355-8506 (sapphire ball)
RNKA Tube #
R-2-15B
Dilution Norgren 207 (30)  part of Sho-rate 1.04 x 10-3 2.08x 104
#R07-200- rotometer 1355-8506 (sapphire ball)
RNKA Tube #
R-6-15B
Atomizing Norgren 207 (30)  Whitey 1110 2.83x10°3 2.1x1073
air #R12-400-RNLA SS-21RS4 Tube # (float # 8RV3)
R-8-2M5-4
Swirl air  Norgren 207 (30)  Whitey 1110 1.87 x 10-2 33x10-3
#R12-400-RNLA B-18VF8 Tube # (float # 8LJ48)
R-8-2M5-4
Screenair Watts R119-126 69(10)  Lunkenheime Dwyer Well 6.23 x 10-2 1.7 x 102
r Manometer (red gage oil)
#310

2 Brooks, unless otherwise specified
b airflows: multiply kg/sec by 1767 to get standard cubic feet per minute
€ operating flow: 16.61b/hr

Confined Screen Air

The air circuit for confined screen air is the same as the air circuit described above. The difference is that
the air is introduced into the confined duct using a manifold arrangement as shown in Figure 3.3.1-2. The
flow is split into four flows which are recombined as opposed jets in the manifold. A flow straightener is
used to dampen out any local velocity peaks in the resulting flow as it travels down the duct towards the
measurement region. Measurement in the duct shows that the flow is well developed at the measure-
ment plane and that the optical ports do not perturb the central portion of the flow field.

Swirl Air Circuit
This circuit is similar in nature to the two described above. A rotometer arrangement is used to provide

good sensitivity and flow rate monitoring. A 12.7 mm (0.5 in.) line is used to transport the air from the
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valve to the swirl air passage. The air travels 1325 effective duct diameters (based on hydraulic diameter
of the swirl passage) before it reaches the swirler location.

Atomizing Air Circuit

A rotometer arrangement is utilized again. The selection of tube size and float type were made to give
the maximum sensitivity for the flow rates called for in the testing protocol.

Seeding Air Circuits

The seeding circuits require little air flow. However, in the present experiment, the exact matching of
flow rates is required. As a result, the seeding system (described later) utilizes monitored air circuits. Ro-
tometers are utilized owing to their ability to monitor very low flow rates.

All the air circuits were calibrated using a Laminar Flow Element (Meriam Model No. 50MW20-1) or a
GCA /Precision Scientific wet test meter (Model No. 63111) depending on the amount of flow being cali-
brated. All flows were calibrated at 30 psig. Necessary correction for flow temperature and pressure
were made. All flow circuits were then checked for critical flow in all configurations. A gauge is placed
immediately downstream of the regulating valve for the nozzle air to continuously monitor the back
pressure and ensure maintenance of critical flow at the calibrated pressure.

3.2 Gl a live

The beads are added directly to the nozzle air which is run into the bead injector. Primary concerns with
the injection of the beads include the mixing of the beads in the flow field to ensure a uniform concentra-
tion of the beads throughout the flow field at the exit of the bead injector and uniformity of delivery. To
facilitate mixing of the beads in the air stream, an upstream location of z/D = 150 for injection of beads
was selected. The manner in which the beads are injected ensures that the beads remain suspended in the
nozzle air, with the drag force due to the nozzle air being three orders of magnitude greater than the force
due to gravity.

The dryness of the air into which the beads are injected, in combination with the aluminum and nylon
hoses which carry the two phase flow, promotes a buildup of static charge and, thus, local peaks in con-
centration in the flow field. Figure 3.3.2-1 (a) demonstrates the effect of static charge on the flow field. To
eliminate this problem, several approaches were considered.

To eliminate the problem, a controlled amount of moisture was added to the air stream. Variations in the
amount of moisture were controlled by humidifier nebulizers fully contained within the flow circuits. It
was found that the addition of 1.5% by volume of water vapor sufficiently increased the humidity to off-
set the buildup of charge on the beads. Fortuitously, these nebulizers were available as part of the seed-
ing system described in more detail in section 3.5. Figure 3.3.2-1 (b) shows the resulting flow field after
adding moisture. The amount of water vapor added is not enough to introduce new errors due to density
gradients as discussed. To further enhance the elimination of charge, a strongly dissociating substance
such as salt can be added to the water which is nebulized to provide better charge transfer.

The second area of concern involved the steady injection of beads into the flow field. To minimize cost, a
screw feeder was selected to feed the beads into the nozzle air. Several modifications were made to the
discharging end of the feeder as shown in Figure 3.3.2-2. A mixer tube was sealed over the discharge
tube as shown. The discharge tube is oriented so that the opening points slightly upwards. The mixer
tube tends to fill up, damping out the pulsations that would otherwise occur from the motion of the
screw. Prior to the inductor, the nozzle air is split into two portions. The smaller portion is directed to a
tube above the opening of the discharge tube which directs a jet of air onto the beads sitting in the tube,
mixing them in the discharge tube and mixer further damping out pulsations. The remainder of the air is
directed through the Venturi inductor creating a suction on the body of the inductor, entraining the beads
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into the nozzle air. The split air circuit permits careful balancing of pressure or vacuum in the inductor
body. By monitoring the pressure/vacuum gauge, stable operating conditions are then identified for the
system. The configuration can then be changed and brought back to the same conditions. High speed
cinematography demonstrated careful use of the above system establishes a flow field with no pulsations.

M nol Deli

Steps taken to eliminate variables associated with the delivery of methanol included the use of a hy-
draulic accumulator and refrigeration.

A schematic of the accumulator is shown in Figure 3.3.3-1. The accumulator provides the advantages of a
constant pressure reservoir delivery system as well as those of a gear pump arrangement, while eliminat-
ing the disadvantages of both. The methanol delivery pressure originally required for the flow rates se-
lected for this study was nominally 105 psig. Tests demonstrated that, at this head pressure, the pressur-
izing gas is absorbed into the methanol. These tests involve the pressurizing of a gaseous volume above a
standing reservoir of methanol for a given period of time. Such a setup is typically used for fuel delivery
in atomization experiments. It is noteworthy that the data sets obtained by Solomon et al (1985) and
Shearer et al (1979) used this technique for delivery of the fluid without concern for gas absorption. Sub-
sequent removal of the pressure as the methanol is atomized allows the gas to escape rapidly. This es-
cape of gas causes secondary atomization or "flashing" as the spray field evolves. The effects of this phe-
nomenon have been utilized to enhance atomization and have been documented by Solomon et al (1985).
The hydraulic accumulator permits the methanol to be isolated from the pressurizing gas and, as a result,
eliminates the phenomena described above. The elimination of secondary atomization reduces ambiguity
in the development of the spray field, permitting only aerodynamic and mass transfer effects to be stud-
ied, hence minimizing complications for the modeler. Ironically, modifications to the atomizer to create a
more flexible system revealed that 90% of the pressure drop was due to a filter in the fuel passage. In the
configurations used for testing, in fact, no filter was used, and the pressure drop reduced to about 12 psig.
Because of this, the use of the accumulator was not as critical.

Calculations and experiments were used to determine a saturation temperature of methanol of -10°C. By
injecting the liquid at this temperature, the need to account for changes in temperature of the liquid as it
evaporates is eliminated. The elimination of this effect is important for modeling (Mostafa and Mongia,
1987). An inline refrigerator (Weber Engineering and Manufacturing custom design) was designed for
application to this problem.

A potential problem with injection at -10°C was fogging. The cold temperatures in the air could cause
water vapor to condense out, creating fog within the chamber. This was especially a concern in the con-
fined duct. During the testing, the room conditions were maintained at 30% relative humidity. The rela-
tive humidity of the air supplied to the experiment was consistently below this due to the driers and fil-
ters used. At 30% relative humidity, the dew point is 13.8°C. Measurements within the spray using a
thermocouple shielded from direct impact of the spray showed that the air temperature was 14 to 16°C.
Based on these findings, fog was not expected to occur when using the dry experiment air. Subsequent
testing in the confined duct revealed that some fogging did occur on the outside of the duct on the optical
windows. No fogging was observed on the inside of the duct. The fog on the outside was cleared by
blowing a stream of air from the compressor system across the windows.

Additional concern was raised when using the seeders which placed water into the experiment air. Cal-
culations showed that, in the worst case, the seeder water raised the relative humidity within the chamber
by no more than 3%. Examination of the confined duct while running the seeders revealed no fogging in-
side. As an extra precaution, methanol was used in the seeders when running the methanol experiments
requiring seed.
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Figure 3.3-1. Flow system.
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Figure 3.3.1-1. Unconfined screen air manifold.
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Figure 3.3.2-1. Particle-laden jet.
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3.4 INJECTOR/SWIRLER ASSEMBLIES

In the interest of providing data relevant to practical combustor systems, the hardware studied for
methanol injection was selected from an actual combustor system. The atomizer used is a production he-
licopter gas turbine fuel injector (Ex-Cell-O P/N 506P020) typical of the air-blast variety found in current
gas turbine combustor designs. A schematic of the atomizer is shown in Figures 3.4-1 and 3.4-2. Figure
3.4-1 shows a detailed schematic of the atomizer without the nozzle air cap. The dotted outline of the
0.25-inch fuel tube is shown at the top of the injector. The dotted line which appears at the bottom of the
contraction on the shaft of the nozzle corresponds to the end of an adaptor piece constructed to interface
the fuel tube to the atomizer. The adaptor replaces the standard AN fitting and a threaded mounting
piece which holds the atomizer in place in the actual engine. To facilitate easy installation, and to provide
long lengths of pipe upstream of the swirler, the adaptor concept was employed.

With the adaptor, the nozzle is fitted into the fuel tube as shown in Figure 3.4-2. A recess on the O.D.
near the end of the 27.50 mm tube corresponds to the location of the swirl vanes when the outer air tube
is in place. Note that the vanes, when in place, are recessed 6.35 mm behind the nozzle exit. This will
later be discussed in more detail.

3.4.1 Injector Flow Split Study

Because the atomizer features two air circuits, one on either side of the liquid filming surface, it is impor-
tant to quantify the air flow through each. In order to do this, a series of tests were conducted in which
one passage was blocked and air was flowed through the other circuit at a known rate.

A plenum was used for the tests as shown in Figure 3.4.1-1. A square box 150 x 150 x 250 mm was used.
The pressure drop was recorded for a variety of flow rates with each circuit blocked and with neither cir-
cuit blocked. In addition, tests were run with and without methanol flowing at the design rate. This in-
formation was used to calculate the effective area of the atomizer as a whole and of the individual air cir-
cuits using Equation 1 (Chang, 1985).

Acd =mT105 / (2.0547*P1*F(r2)) 1

where
m = mass flow of air
T1 = inlet temperature (°R)
P1 = inlet pressure (psia)
F(rg) = [ (r)14286 _ (15)1.7143 105
where
r2 = P2/P1, where P2 is the outlet pressure

The results of the tests are summarized in Table 3.4-I. Note that the sum of the individual areas is not
equal to the area of the overall area. This is consistent with tests run at Textron Turbo Components,
where typically it was found that areas do not sum properly due to stream interaction not present in the
cases where a single passage is blocked. In summary, the flow split between each passage is about the
same, and the total area is reduced when methanol is present.

3.4.2 Nozzle Symmetry Evaluation

The goal of the symmetry testing was to identify a nozzle which provided an axisymmetric flow. Because
of the practical hardware utilized, symmetry was a concern. To this end, nearly two dozen nozzles were
screened for symmetry. Because most of these were "burnt” (i.e., run in engine tests), many had obvious
defects such as bent bodies, or dented air shrouds. These were eliminated without significant evaluation.
The remaining half-dozen atomizers were screened more carefully. In an effort to obtain a highly sym-
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Table 34-1.
Results of flow split test.

Case Acd
No Blockage

No methanol 0.0359 in2

Methanol 0.0309 in2
Center Blocked

No methanol 0.0184 in2

Methanol 0.0181 in2
Outer Blocked

No methanol 0.0206 in2

Methanol 0.0185 in2

metric atomizer, a handmade version with tight machining tolerances was included in the nozzles ob-
tained.

An example of the comparison among three of the atomizers is presented in Figures 3.4.2-1 and 3.4.2-2,
where the effect of nozzle orientation on the mean spray velocity and SMD are presented, respectively.
Note that, for example, nozzle C is significantly less symmetric than either A or B. Based on this study,
nozzles A and B were judged to be the best, and nozzle B was selected for testing. Interestingly, the
handmade nozzle (A) was expected to perform better than the others, and, in fact, was subjected to de-
tailed preliminary testing before considering nozzles B or C.

The preliminary tests on nozzle A were detailed in nature and considered both the symmetry of the gas
phase as well as the drops. Interestingly, symmetry of the spray did not necessarily guarantee symmetric
gas flows. The results from nozzle A are shown in Figures 3.4.2-3 through 3.4.2-6. Figure 3.4.2-3 presents
the locations at which data were collected. Note that all data were collected along a single radial traverse,
and that, for plotting, the results from each profile were rotated about the centerline to reflect the rotation
of the nozzle.

Figure 3.4.2-4 presents isopleths of the mean axial velocity at 50 mm downstream of the injector for the
case without and with the spray. The case without the spray (Figure 3.4.2-4 [a]) exhibits a kidney shaped
result, rather than a circular pattern. When the spray is turned on, the pattern becomes much more sym-
metric (Figure 3.4.2-4 [b]). The lobed nature of the patterns with the spray could be attributed to the dis-
tinct passages through the atomizer.

The azimuthal velocity results (shown in Figure 3.4.2-5) exhibit trends which are correlated directly to the
observations in Figure 3.4.24 . In Figure 3.4.2-5 (a), the locations where the azimuthal velocity profiles
show the highest values correpond to the location of the major axis of the ellipsoid formed by the axial ve-
locity isopleths.

Based on this, the more circular pattern of the axial velocity isopleths with the spray on should result in
uniform azimuthal velocity profiles. And this is the case, as observed in Figure 3.4.2-5 (b).

In summary, for nozzle A, it was observed that the gas phase velocity fields were quite symmetric for the
case with the spray. However, the single-phase cases were not as symmetric. Similar results for the liq-
uid flux distribution were also observed, as shown in Figure 3.4.2-6. Although nozzle A was made quite
carefully, it did not perform ideally.



Based on the detailed studies of nozzle A, it was decided to use nozzle B in the actual data runs for the
program. Subsequent testing of nozzle B revealed that, in fact, it was more symmetric, in the single-phase
case, but that it still revealed some asymmetry. This will be shown in Section IV.

4.3. Aer mic Swirler

The swirler used in the conditions calling for swirl is manufactured by Allison for use in conjunction with
the above atomizer in the same production gas turbine combustor. A schematic of the swirler is shown in
Figure 3.4.3-1. Based on the design of the swirler, a swirl number of 1.53 was determined using Equation
2 (Beer and Chigier, 1976)

¥3)

where
Rh = radius of hub (27.55/2)
R =radius of outer wall (36.68/2)
o = angle of vane from flowstream (60 degrees)

As with the atomizer, the use of industry hardware for the swirler, while making the data obtained more
relevant to practical systems, also introduces problems associated with relatively low manufacturing tol-
erances. As such, the testing protocol requires testing the swirlers for symmetry. In this case, two
swirlers were evaluated. For this study, air was run through the central 24.9 mm pipe and through the
swirler surrounding it. Two tests were run, both of which required measurements of velocity at a radial
location of 18 mm from the centerline at two axial locations. The first test involved rotating the central
tube (nozzle) while leaving the swirl vanes fixed. The second test involved rotating the swirl vane as-
sembly while leaving the central tube fixed. The results are presented in Figure 3.4.3-2.

Swirler 1 (Figure 3.4.3-2 [a]) shows little variation in axial velocity when the nozzle is rotated independent
of the swirler. However, when the swirler is rotated independent of the nozzle, a modest local maximum
in the velocity is observed at the 120 and 150 deg orientation at the 75 and 150 mm axial locations.

In comparison, swirler 2 (Figure 3.4.3-2 [b]) shows similar results for the case where the nozzle is rotated
independent of the swirler, but shows a more random behavior for the case where the swirler is rotated
independent of the nozzle. Further, the amount of variation for a given orientation is less for the second
swirler. Based on this study, swirler 2 was selected for use in the testing.

3.44 Evolution of Experimental Test Conditions

The original flow conditions were set based upon typical operating conditions for the Ex-Cell-O noz-
zle/swirler configuration. The swirl flow condition was set by Allison based on a gas velocity of 300
ft/sec through the 60 deg swirler. From this velocity, and knowledge of the effective area of the 60 deg
swirler, the representative mass flow of 0.0133 kg/s was established. To determine the nozzle operation
condition, flow rates for the air and fuel that represented the average flow conditions for the Ex-Cell-O
nozzle were selected. Thus the mass flow of methanol was set at 0.0021 kg/s and the desired air-to-fuel
ratio of 1.0 set the corresponding atomizing air flow at the same value.

Both confined and unconfined configurations were desired. The former condition was established by the
use of a 6-inch diameter Plexiglass duct concentrically located around the nozzle/swirler assembly. The
original unconfined condition called for an 18-inch duct located in the same manner.



The confined condition called for modest screen air (air injected into the annulus between the nozzle/
swirler assembly and the wall of the surrounding 6-inch duct) for the nozzle-only condition. Both the 60
deg and 0 deg swirl conditions called for blockage of the screen air passage to better represent actual
combustor geometry. The above conditions are tabulated in Table 3.4-II and depicted graphically in Fig-
ure 3.4.4-1, where the figure letter corresponding to the condition is indicated in the second column.

Table 3.4-11.
Initial test conditions.
nfi n irl
mpkg/s mpkg/s mckg/s mckg/s mg ms
Case Figure Injected my monosized multisized 457.2mm 1524 mm kg/s kg/s
No. No. material kg/s particles particles duct duct Odeg 60deg
1 344-1a Aironly 0.0021 0.097
2 3.44-1b asbase 0.0021 0.0 0.0133
3 344-1b foreffect  0.0021 0.0 0.0133
4 344-1e of 0.0021 0.01
5 344-1f particles 0.0021 0.0 0.0133
6 3.44-1f 0.0021 0.0 0.0133
7 344-1a Unconfined 0.0021  0.0021 0.097
8 344-1b mono- 0.0021  0.0021 0.0 0.0133
9 344-1b dispersed 0.0021  0.0021 0.0 0.0133
10 344-1e Confined 0.0021 0.0021 0.0025
11 344-1f mono- 0.0021  0.0021 0.0 0.0133
12 344-1f dispersed 0.0021 0.0021 0.0 0.0133
13 344-1b Multisized 0.0021 0.0021 0.0 0.0133
14 344-1b particles 0.0021 0.0021 0.0 0.0133
15 344-1f 0.0021 0.0021 0.0 0.0133
16 344-1f 0.0021 0.0021 0.0 0.0133
17 344-1c Aironly 0.0021 0.097
18 344-1d forair- 0.0021 0.0 0.0133
19 344-1d blast 0.0021 0.0 0.0133
20 344-1g atomizer  0.0021 0.01
21 344-1h 0.0021 0.0 0.0133
22 344-1h 0.0021 0.0 0.0133
23 344-1c Unconfined 0.0021 0.0021* 0.097
24 344-1d spray 0.0021 0.0021* 0.0 0.0133
25 344-1d 0.0021 0.0021* 0.0 0.0133
26 344-1g Confined 0.0021 0.0021* 0.01
27 344-1h spray 0.0021 0.0021* 0.0 0.0133
28 344-1h 0.0021 0.0021* 0.0 0.0133

* Polydispersed methanol spray



Modification 1 — Har I

Discussions of the original conditions led to some modest changes in the hardware. The ability of the 18-
inch duct to property reflect an unconfined environment was questioned. It was decided to replace the
Plexiglass duct with one made of screen mesh. The reasoning was that the permeable wall would permit
efflux of downstream air that before would have interacted with the physical wall as influx of entrained
air. The drawback to this approach was the difficulty of properly seeding the entrainment air. This prob-
lem was handled by surrounding the entire delivery tube/plenum assembly with another confined struc-
ture. The resulting Plexiglass/tarp confinement structure provided the ability to monitor entrainment air
flow and thus ensuring proper seeding.

In summary, the unconfined case is represented by a screen structure 18 in. in diameter which is in turn
surrounded by a Plexiglass/tarp assembly which seals the entire test structure from the room. At this
point, no flow rate changes were made with the exception that the entrainment air which before was
screen air in the 18-inch duct now had no set flow rate. To determine the proper flow, it was decided to
balance the pressure inside the Plexiglass/tarp assembly with the room air. The resulting configuration is
shown in Figure 3.1.1-1.

Modification 2 — Hardwa nges to Reduce Impingement in the Six-Inch Du

Impingement in the 6-inch duct was expected to be a problem. Initial testing with the proposed flow
rates demonstrated the realization of these expectations. Impingement occurred nearest the nozzle exit (0
in. below) when the 60 deg swirl conditions were used. Because the 60 deg condition most closely repre-
sented the operating conditions and geometry of an actual combustor, there was great desire to retain that
condition in the test matrix. Two solutions were considered. One was hardware changes to reduce im-
pingement, the other was to modify the flow rates. Because the general goal of the program was to study
effect of hardware changes rather than flow condition changes, the first option was exercised initially.

It was decided that a reduction in the spray-cone angle would move the impingement point away from
the nozzle exit. Thus, the shroud concept was incorporated. The shroud was to take the place of the orig-
inal cap at the end of the nozzle assembly. The shroud channeled a portion of the atomizing air around
the outside of the nozzle as shown in Figure 3.4.4-2.

Although conceptually sound, the shroud introduced complexities both experimentally and analytically.
Experimentally, there was no practical way to monitor the flow rate through the new passage, nor was
the concentricity of the nozzle/shroud cap ensured. Analytically, the boundary and inlet conditions were
further complicated.

Despite the above drawbacks, one shroud design was evaluated. The design is depicted in Figure 3.4.4-2
(c). The design selected created tractable inlet conditions but the experimental flaws remained. Initial
testing of the design proved to be encouraging enough to consider its use.

Modification 3 — Flow

Comparison of the shroud and the no-shroud cases in the 6-inch duct demonstrated that more than
physical modifications would need to be considered. Allison and UCICL decided the approach to take
would be as follows (for the methanol, confined, 60 deg swirl configuration)

vary nozzle flow rates

cut swirl air by a factor of 2

use the screen air instead of blocking the passage
. 3-inch dome region adequate for this study

W
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Initial testing demonstrated that the nozzle flow rates did not strongly affect the cone angle; that the swirl
air flow rate dramatically affected the cone angle; the screen air was needed to prevent recirculation back

above the nozzle, but did not strongly affect the cone angle; and that the 3-inch region would be the limit

for testing. Formal testing then followed.

Evaluation of all nozzle/swirler configurations was conducted in the 6-inch duct. It was decided to vary
to swirl air, the screen air, and the use of the shroud. The results are summarized in Table 3.4-III

Overall conclusions drawn from the flow rate studies were

e Screen air is required to eliminate recirculation eddies at the wall.

¢ Swirl air has the strongest influence on the location of impingement.

e All of the above flows possessed medium to high dynamics which result in the "periodic im-
pingement” above.

From the above it appeared that the condition using the shroud, 0.031 kg/s of screen air, and 50% swirl
air would be satisfactory because the majority of the impingement occurred at 3 in. below the nozzle exit.
However, the dynamics leading to periodic impingement were unacceptable.

Table 3.4-111.
Impingement testing results.*

Screen Perodic Continuous
Shroud Configuration Swirl kg/s) impin impinge
no 60 deg 100% 0.031 0 +50
100% 0 -50** 0
50% 0.031 +25t +50
50% 0 -87 +25
yes 60 deg 100% 0.031 +30 +70
100% 0 -12 +12
50% 0.031 +28 +75
50% 0 -38 +25
no Odeg 100% 0.031 +100 ~
100% 0 -75 ~
50% 0.031 +95 ~
50% 0 -75 ~
yes Odeg 100% 0.031 +88 ~
100% 0 -50 ~
50% 0.031 +88 ~
50% 0 -87 ~
no nozzle-only 0.031 +100 ~
0 -125 ~
yes nozzle-only 0.031 +112 ~
0 -125 ~

*  Impingement values in mm
** + indicates downstream of injector
t - indicates upstream



Steps to reduce the dynamics were then initiated. The screen air circuit was replumbed to provide higher
flow rates. It was found that increasing the screen air created a better behaved flow field, but dynamics
still persisted.

Next, the swirl air flow was reduced to 25% of its original value. This reduction indicated that the swirl
air was largely responsible for the dynamics. The dynamics with 25% swirl air, 0.040 kg/s screen air, and
shroud in place were acceptable. Further, even at 25% of the original flow, the swirl air had a significant
effect on the flow field. At this point, the flow conditions were set as follows

nozzle
fuel 0.0021 kg/s
air 0.0042 kg/s (half to go to shroud circuit)
“swirler 0.0033 kg/s
screen air @0.04 kg/s
entrainment air (unconfined) to be determined

The above conditions were evaluated for the other nozzle/swirler configurations and found to be accept-
able.

With the glass beads, it was found that less screen air was required to minimize impingement. Asare-
sult, the screen air for the cases with beads was set at 0.027 kg/s. The screen air flow rate of 0.040 kg/s
was retained for the cases with spray.

As a last step, it was decided to evaluate the new conditions in the unconfined regime. The conditions
were acceptable for glass beads. However, when methanol was evaluated, substantial asymmetries were
noted. Subsequent testing of the nozzle-only condition with and without the shroud identified the
shroud as the cause of the asymmetries. When the shroud was not used, all configurations operated ac-
ceptably.

The asymmetry problem required a new evaluation of the use of the shroud. Testing in the confined duct
resumed. It was found that the increased screen air flow (previously unavailable) provided acceptable
conditions for the no-shroud case. Before, the use of the shroud moved the impingement point by 25 mm.
With the increased screen air, the use of the shroud moved the impingement point 6.5 mm, thus the use of
the shroud was dropped in favor of symmetry.

A follow-up evaluation of the no-shroud case in the unconfined regime demonstrated symmetry and well
behaved flow. Thus the following flow rates were decided upon

nozzle/bead injector
air 0.0021 kg/s
methanol or beads 0.0021 kg/s
swirler 0.0033 kg/s
screen air (in all confined testing)
spray tests 0.040 kg/s
bead tests 0.027 kg/s

entrainment air (all unconfined testing)  to be determined

Because the reduction in swirl air made that flow unrealistic, it was decided to do a limited additional
study in both the confined and unconfined cases.

In the confined case, for the conditions above, a test will be run using only air, both 0 and 60 deg swirlers,

and a disk blocking the nozzle air passage. This will provide additional data to bridge between element B
and C.
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In summary, the test matrix shown in Table 3.4-IV represents, in a similar format as the original, the
changes made in the testing conditions. The final testing matrix is shown in Table 3.4-1V, including addi-
tional configurations added as described above. Note that the case numbers are not continuous. This is
because tests were run out of order and the matrix was modified based on modeling needs after this con-
vention for the cases was adopted. The results reported within Sections IV and V reflect the measure-
ments made using the matrix presented in Table 3.4-V. The final geometries have been discussed in sec-
tion 3.1, and can now be reviewed with the perspective behind their selection.

Table 3.4-1V.
itial nditions an n
Confinement Swirler
R mpkg/s mpkg/s mckg/s mckg/s mg ms
Case Figure Injected mjya monosized multisized 457.2 mm* 1524 mm kg/s kg/s
No. No. material kg/s particles particles _ duct  __duct  Odeg 60deg
1 344-1a  Aironly 0.0021 0.097*
2  344-1b asbase  0.0021 0.0* 0.0133*
3 344-1b  foreffect 0.0021 0.0* 0.0133**
4 3441e of 0.0021 0.01t
5 344-1f particles 0.0021 oot 00133+
6 344-1f 0.0021 oot 00133+
7  344-1a  Unconfined 00021  0.0021 0.097*
8 344-1b mono-  0.0021  0.0021 0.0* 0.0133*
9  344-1b  dispersed 0.0021  0.0021 0.0* 0.0133*
10 344-1e Confined 00021 0.0021 0.0025t
11  344-1f mono-  0.0021 0.0021 0ot  0.0133+
12 344-1f  dispersed 0.0021  0.0021 oot 00133+
13 344-1b  Multisized 0.0021 0.0021 0.0* 0.0133*
14 344-1b  partices  0.0021 0.0021 0.0* 0.0133*
15 3.44-1f 0.0021 0.0021 0ot 00133
16  344-1f 0.0021 0.0021 oot  0.0133
17 344-1c  Aironly 0.0021 0.097*
18 344-1d forair-  0.0021 0.0* 0.0133*
19 344-1d blast 0.0021 0.0* 0.0133*
20 344-1g  atomizer 0.0021 001t
21  344-1h 0.0021 0ot 00133+
22 344-1h 0.0021 oot  0.0133+
23 344-1c Unconfined 0.0021 0.0021tt  0.097*
24 344-1d spray 0.0021 oo021tt  o00* 0.0133*
25 344-1d 0.0021 00021t o0+ 0.0133*
26 344-1g Confined 0.0021 0.00211t 001t
27 344-1h  spray 0.0021 0.0021tt 0ot  0.0133*
28 344-1h 0.0021 0.00211* 00t  0.0133*

*  Ductreplaced by screen. Entrained air taken as needed by flow.
** Swirl flow reduced to 0.0033 kg/s (0.25 times original flow).

t  Confinementscreen air set at 0.045 kg/s for all confined cases.
t Polydispersed methanol spray
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Table 3.4-V.

T nditions based on screenin
— Confinement Swirler
mpkg/s mpkg/s mckg/s mckg/s mg ms

Case Figure Injected my monosized multisized 457.2mm 1524 mm kg/s kg/s
No. No.  material kg/s partiles partiles _duct _duct Odeg 6Qdeg

1 31.1-1 Aironly  0.0021 " 0.0033

2 3.1.1-1 asbase 0.0021 - 0.0033
3 3.1.1-1 for effect 0.0021 it

4 3121 of 0.0021 0.045

5 31.2-1 particles  0.0021 0.045  0.0033

6 3.1.2-1 0.0021 0.045 0.0033
7 3.1.1-1 Unconfined 0.0021 0.0021% -

8 31.1-1 mono- 0.0021 0.0021% e 0.0133

9 3.1.1-1 dispersed 00021 00021} - 0.0133
10 3121 Confined 00021 000211 0.045

11  312-1 mono- 0.0021 00021t 0.045  0.0133

12 3121 dispersed 00021 00021t 0.045 0.0133
13  3.1.1-1 Multisized 0.0021 0.0021 *

147 3111  particles  0.0021 0.0021 - 0.0033

15t 3114 0.0021 0.0021 - 0.0033
161t 3.1.21 0.0021 0.0021 0.045

17t 3.1.21 0.0021 0.0021 0045  0.0133

17t 3121 0.0021 0.0021 0.045 0.0133
19 3111 Aironly  0.0021 w

20 3.1.1-1 forair- 0.0021 - 0.0133

21  3.1.1-1 blast 0.0021 - 0.0133
22 312-1 atomizer  0.0021 0.045

23 3.1.2-1 0.0021 0.045  0.0133

24 3121 0.0021 0.045 0.0133
25 31.1-1 Unconfined 0.0021 0.0021* -

26 3.1.1-1 spray 0.0021 0.0021* il 0.0133

27 3.1.1-1 0.0021 0.0021* " 0.0133
28 3.1.2-1 Confined 0.0021 0.0021* 0.045

29 3121 spray 0.0021 0.0021* 0.045  0.0133

30 3.1.2-1 0.0021 0.0021* 0.045 0.0133
31  31.1-1 Swirlonly 0.0033

32 3111 0.0033
33 3121 0.045  0.0033

34 3121 0.045 0.0033

* Polydispersed methanol spray

*  Entrained air proivded as needed by flow. Amount of air not measured directly.

a Both 0.00042 and 0.0021 kg/s considered instead of items denoted with b.

b Lack of impact of 25 micron beads made these cases redundant. Difficulty with feeding two sizes
with one feeder also required additional funds for second feeder.
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Figure 3.4-1. Ex-Cell-O air-blast atomizer: detail of flow passages through atomizer
with outer shroud removed.
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Figure 3.4.1-1. Plenum used for flow split study.
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Figure 3.4.2-1. Symmetry of mean spray velocity profiles for three atomizers
(McDonell, Cameron, and Samuelsen, 1990).
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Figure 3.4.2-3. Measurement locations for detailed symmetry evaluation
(McDonell and Samuelsen, 1990b).
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Figure 3.4.2-4. Isopleths of mean axial velocity at an axial location of 50 mm
(McDonell and Samuelsen, 1990b).
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b) In the Presence of
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Figure 34.2-5
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. Profiles of mean azimuthal velocity at an axial location of 50 mm
(McDonell and Samuelsen, 1990b).
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Figure 3.4.2-6. Isopleths of volume flux at an axial location of 100 mm (McDonell and Samuelsen, 1990b).
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Figure 3.4.3-1. Aerodynamic swirler.
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a) Non-Evaporating, Unconfined b) Non-Evaporating, Unconfined
No Coflow 0 or 60 deg. Coflow

COFLOWFOR
0 OR 60 DEG. SWIRL

BEADS/AIR BEADS/AIR
il £ !

18.0"
<>
0 OR 60 DEG.
SWIRL
TE92-1658

Figure 3.4.4-1. Original geometries (1 of 4).
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c) Evaporating, Unconfined d) Evaporating, Unconfined
No coflow 0 or 60 deg. Coflow

COFLOWFOR
0 OR 60 DEG. SWIRL

METHANOU/AIR METHANOL/AIR

f 4

A 4

-—
_—

18.0"
>
0 OR 60 DEG.
SWIRL TE92-1659

Figure 3.4.4-1. Original geometries (2 of 4).
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f) Non-Evaporating, Unconfined

e) Non-Evaporating, Confined
0 or 60 deg. Coflow

No coflow

COFLOW FOR
0 OR 60 DEG. SWIRL
BEADS/AIR BEADS/AIR
NO COFLOW

6.0"

Eo— —
«——> 6.0"
0 OR 60 DEG.
SWIRL
TE92-1660

Figure 3.4.4-1. Original geometries (3 of 4).
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g) Evaporating, Confined h) Evaporating, Confined
No coflow 0 or 60 deg. Coflow

COFLOW FOR
0 OR 60 DEG. SWIRL

METHANOL/AIR METHANOL/AIR

5

0 OR 60 DEG.

SWIRL
TE92-1661

Figure 3.4.4-1. Original geometries (4 of 4).
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a) Original Cap
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b) Shroud Concept

c) Evaluated Shroud
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Figure 3.4.4-2. Atomizer shroud evaluation: original cap.
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3.5 DIAGNOSTICS - VELOCITY MEASUREMENTS

This section describes the laser anemometry setup used in the acquisition of velocity measurements. In
reality, several versions of the system were used throughout the testing done in support of this program.
Hence, historical perspective is included in this section which provides the reader with an appreciation of
the evolution of the diagnostics which occurred through close interaction with the manufacturer.

3.5.1 Laser Anemometry System

Selection of the laser anemometry (LA) system was made considering the test plan as a whole. An LA
system could have been used for the measurement of the single-phase flows, and then the phase Doppler
interferometer (PDI) could have been used for measurement of the dispersed phases. However, the need
to measure gas phase velocities in the presence of the dispersed phase required more consideration, as
described in section 3.7. Finally, it was decided that use of two independent instruments was unreason-
able, and that a phase Doppler instrument, operated without sizing should be used for characterization of
the single-phase flows. However, the phase Doppler instrument was designed with sizing as the first
priority and with velocity as a secondary consideration which led to some challenges in applying the in-
strument as an LA system. These challenges will be discussed within this section.

In general, the applications of interferometry for making velocity measurements have been well estab-
lished (e.g., Durst et al, 1976). As such, the choice of LA for making velocity measurements in two-phase
flows is clear.

A two-component instrument (Aerometrics, Inc.) is used in a nonsizing mode to obtain simultaneous
measurements of two orthogonal components of velocity. A schematic of the transmitter is shown in Fig-
ure 3.5.1-1. The system is driven with a 1 W Lexel Argon-Ion laser. The beam is horizontally polarized
and is split into blue (488.0 nm) and green (514.5 nm) beams via a dichroic mirror. The mirror is opti-
mized to reflect 78% of the blue and 0.6% of the green, and to transmit 84% of the green and 1.4% of the
blue. Each color beam is then directed through a line filter which eliminates any broad-band wavelengths
present. The output from each liner filter is focused onto a rotating diffraction grating which serves to
split the single beam into several ordered pairs of beams. Once split, the two first order beams of each
wavelength are recombined on the original axis using another dichroic mirror and subsequently colli-
mated with either a 160 mm or 300 mm achromat lens. The two pairs of mutually collimated beams are
then focused with a 495 mm f/6.4 lens to form overlapping probe volumes for two components of veloc-
ity. The nominal size of the probe volume waist was varied depending upon the application. For the
measurement of the glass beads, the 300 mm lens was utilized, resulting in a beam waist of about 115 mi-

crons. For the sprays, the 160 mm collimation lens was used which provided a beam waist of about 220
microns.

The scattered light from both color probe volumes is collected by the same receiver lens. A schematic of
the receiver is shown in Figure 3.5.1-2. The light is collected by a 629 mm /5.7 lens and focused by an
air-spaced triplet lens onto a 100 micron x 1 mm slit which acts as a spatial filter. The lens design was
optimized to provide a 5 micron blur spot and to eliminate chromatic aberration, providing an accurate
definition of the imaged slit on the probe volume and improving signal-to-noise ratios. The light passing
through the slit is then collimated and is chromatically split by another dichroic mirror. The blue light is
sent directly to a photomultiplier tube (Hamamatsu model R928HA) and the resulting signal is sent to the
processor. The green light is split into three portions, each of which is directed at a separate photomulti-
plier tube. The splitting of the light is required for sizing purposes as described below. As a result of the
splitting, the intensity of the green light hitting a given photomultiplier tube is less than that for the blue
light. The portion of light hitting the top area of the receiver lens is used for determining the velocity of
the scatterer in the axial direction. Figure 3.5.1-3 indicates the approximate area division of the receiver
lens and the corresponding distances between the effective collection areas for the three detectors em-
ployed in the measurement of size, which is described in the next section.
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To determine the velocity of the event, the processor utilizes the entire portion of the burst (total burst
mode) which exceeds the threshold value. The use of this technique rather than a fixed-cycle approach
(e.g., comparing average frequencies from the first five and first eight fringe crossings) can lead to errors
if the signal is not carefully filtered. The reason for using this approach is described in the section under
sizing. Figure 3.5.1-4 shows examples of properly and improperly filtered signals. The system provides
feedback to the user during the collection of data by indicating how many events were rejected and for
what reason.

Prior to acceptance into the processor, the event must satisfy three criteria. First, the event must include a
minimum of four fringe crossings for both components of velocity. Also, a degree of simultaneity must
be ensured. The amount of overlap of the signal is used as this criterion. For the present work, if any
portion of the signal is overlapping, the signal is considered coincident.

Reasons for rejection ddﬁng processing are summarized as follows (in order of checking by the processor)

e divide by zero This error will occur if the processor encounters an attempted divide by
zero. Reasons for this occurrence involve situations where the electron-
ics are saturated by extremely high data rates.

e overflow This error occurs if the clock is allowed to run for a period of time ata
given resolution such that the allotted 47 bits become filled. Reasons for
such occurrences include very slow events and filtering at too high a fre-
quency. The net error incurred by not attempting to reduce the amount
of these errors is an indicated velocity which is greater in magnitude
than the actual.

¢ outof range This error occurs if the velocity measured is greater or less than the val-
ues selected by the user to define the velocity pdf limits set up within the
window established by the filters. This error indicates that modification
in the velocity pdf range parameters selection be made by the user. This
error sometimes results when the velocity sensitive range selected seems
correct. This occurs due to low frequency noise which is not filtered
properly. Thus, this error is not always an indication that portions of
good data are being rejected.

* excess fringe crossings  This error is designed to reject signals due to multiple particles in the
probe volume. The value assigned for the limit varies from a minimum
number dictated by velocity range, frequency shift, and probe volume
waist, to a maximum of 256. Again, very slow events can be rejected er-
roneously due to this check.

In general, data are of better quality due to the real time indication of these errors because minor adjust-
ments can be easily made to optimize the quality of the data.

To discriminate between flow direction, frequency shifting is utilized. Classically, frequency shifting is
accomplished via opto-acoustic cells, which typically operate around 40 MHz. Because of the sophisti-
cated timing and signal conditioning required for sizing measurement, the effective bandwidth of the
instrument originally used in the program was 10 MHz. Since no satisfactory commercially available
gratings were available, the original system was used with no shift. This proved to be very limiting in
applying the instrument to gaseous flows, and render two-component operation impossible, since many
of the flow studies featured little or no radial or azimuthal velocity components.

During the beginning of the program, an alternative to the opto-acoustic cells was identified (Jackson,
1985) which would be appropriate for use with the relatively low frequency range of the PDI system,
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namely, rotating diffraction gratings. Each component of velocity is shifted independently using rotating
diffraction gratings. It is noteworthy that the gratings and the motors evolved throughout the duration of
the program. At the time the program started, only one vendor could be identified for the circular grat-
ings required, Technisch Physische Dienst. The typical grating used features three "tracks” which have
different numbers of line pairs. Each track is located concentric to the others and to the center of the disk.

The first version of the gratings were software controlled and provided continuous shift between 0 and
8000 rpm. Using the relation for the frequency shift and rpm

fs=2Nfy 3)

where
fs = the frequency shift (MHz)
N = the number of lines on the track
fr= the rotational speed (rps)

and given the number of lines on the different tracks. For the optical setup used for measurement of the
glass beads, this permits reverse velocities of up to 21 m/s. The 2.2 MHz limit is imposed by the stability
of the motors which are controlled by a separate controller box interfaced to the IBM AT by an RS232
connector. Because of the four fringe minimum required, reverse velocities approaching 20 m/s may be
missed depending on trajectory through the probe due to insufficient fringe crossings and, as such, 15
m/s is a more realistic limit. Although not a serious problem for the modest velocity flows involving the
glass beads, this was a serious limitation for the measurements in the sprays.

Because the diffraction angle is a function of the line pair spacing, the different tracks give flexibility to
the user. However, the geometry of the grating causes fundamental problems to be raised.

Figure 3.5.1-5 shows the details regarding the grating geometry. If the grating is mounted slightly off-
center, the line pair spacing will vary, and as a result so will the fringe spacing. The early version of the
gratings suffered from this problem, which led to an increase in the measured velocity rms, especially
when high frequency shift was used in low turbulence environments. Such concerns over the stability of
the motors and the manner in which the gratings are mounted to the motor shaft resulted in optimization
of the motor assembly (e.g., McDonell and Samuelsen, 1990a; Jackson, 1990).

To address these issues and to extend the frequency bandwidth, Aerometrics developed better versions of
the grating motor (using preloaded bearings) and a better grating mounting methodology to reduce grat-
ing wobble. Besides the increased stability offered by the new motors, their maximum rpm was increased
to 16,000.

In summary, Table 3.5-I presents the evolution of the instrument, and how it ended up in its present state.
Because of time constraints, the upgrade to DIG4 did not impact the present program.

3.5.2 Seeding Systems

To provide scattering of the laser light from the probe volume, particles are needed to seed the flow. Itis
desired to have steady, consistent production of seed to avoid biases due to concentration fluctuations
(see below). One of two systems is used depending upon the flow to be seeded. For flows requiring low
amounts of seed, a system developed by Ikioka et al (1983) is used. This seeder is shown schematically in
Figure 3.5.2-1. In flows requiring high volumes of seed, a fluid bed-type seeder is used, as shown in Fig-
ure 3.5.2-2. Vibrator motors reduce pulsations from the fluid bed as shown in Figure 3.5.2-3. Figure 3.5.2-
3 shows the results without the motors. A reduction in seed output is quite evident with time. With the
motor, the seed output remains relatively stable as shown in Figure 3.5.2-3 (b). The fluid bed is inherently
less stable than the nebulizer system but is able to provide higher volume of seed.
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Table 3.5-1.
Mil nes in development of UCICL PDPA m.

Date Development

7/85 Prototype 1-D system delivered to UCI. No frequency shift. Software v.
2.2.

8/85 Verified system calibration.

10/85 Aerometrics provides "velocity only” software which permits system to
be used as LDV system without sizing.

1/86 Frequency shift added to software. Enables UCI transmitter to be used.

7/86 Two-component system arrives. Debugging of software begins begin-
ning with v.2.1.

9/86 Version 3.0 installed. Chromatic-aberration free receiver lens installed.
Production data collection started.

10/86 Version 3.10 installed. Data series implemented to provide reduced data
file.

12/86 Summary of hardware issues remaining: PMT power drift occurring,
analog filters switching, insufficient frequency shift on CH2 velocities.

4/87 Version 3.49 installed. Incorporates new probe volume correction
scheme.

12/87 Version 3.50 installed. Time series implemented. Too many bugs to be
useful.

6/88 Transmitter sent to Aerometrics for upgrade. Software v. 3.62 installed
incorporating a new probe volume correction scheme.

7/88 Received upgraded transmitter. Increase in frequency shift amount and

stability. Alignment much easier. Software v. 3.67 installed fixing last of
bugs. Time series data available, but no offline support available.

8/88 Ch 1 analog box fails. Repaired.

8/89 Higher speed processor Dig 4 received from Aerometrics. Includes of-
fline support for time series data. Eliminates problems observed with
previous processor.

Both systems permit monitoring of flow rates and, as such, the flow for the seeding system can be ac-
counted for in establishing each required flow rate. In addition, because each seeder has a steady output
rate directly proportional to the flow rate through it, the concentration of seed in the individual air
streams can be well regulated, reducing the effects of concentration bias (see below).

In all cases, aluminum oxide is used as seed (GB-1200, nominally 2.0 microns; Microgrit Corporation).
Figure 3.5.2-4 shows an example of the morphology of the seed output by the two systems. No particles
greater than 10 microns are observed, and the majority are less than 5 microns. Other types of alunima
seed particles were considered. Discussions with Microgrit Corporation led to the selection of the GB
powder, which is blockier than most other types of powders. Because of the desire to have particles as
spherical as possible, the GB powder was judged to be the best choice for this application.

In the flows outlined by the test matrix, there are no situations for which a 5 micron particle will not track
the flow. Thus, the velocity measured is that of the gas phase, since slipping between the seed and the
flow it is tracking is negligible. Durst et al (1976) described relations to determine the maximum size
particle that will track a turbulent flow. Recent work by Bachalo et al (1987) also supports the use of par-
ticles which are less than 5 microns for the flows studied here. Figure 3.5.2-5 shows the methodology in
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establishing the maximum particle size which will track the flow. This study is done for each configura-
tion to ensure proper measurement of gas velocities and associated statistics.

3.5.3 Sampling Bias

There are two primary sources of sampling bias to be addressed in the measurement of gas phase veloci-
ties using individual realization laser anemometry. The first is velocity bias which has been described in
detail by McLaughlin and Tiederman (1973). Velocity bias can occur when measuring evenly seeded air
streams which are of different velocities. Faster moving packets are more likely to have realizations
recorded than the slower moving packets. The approach taken by McLaughlin and Tiederman, for the
removal of this bias, uses of the mean velocity measured together with the velocity of the realization. If
the velocity of each event is weighted by the ratio of the mean overall velocity to that of the event, the bias
can be removed, according to McLaughlin and Tiederman. They also acknowledge that overcorrection
can occur in situations where the flow is not highly turbulent, and making this approach questionable for
use in general. In swirling flows, trajectory effects must also be considered, and the full magnitude of the
velocity should be used in making the correction suggested by McLaughlin and Tiederman.

Another bias can be realized in mixing layers where one layer is seeded in a different concentration than
another. Clearly, the more heavily seeded circuit will have more realizations recorded, and the resulting
measured mean will be biased towards that layer. This bias is minimized in the flows studied in this
work, by carefully controlling the seeding rates. Figure 3.5.3-1 shows an example of the error that can be
induced by concentration bias in the swirling cases where the variation is up to 0.5 m/s. Note that the ac-
tual velocity lies between the two curves shown.

Techniques for removing the bias due to both concentration and velocity involve the transformation of a
Poisson distribution (i.e., random arrival rate ) into a constant time interval arrival rate. Hoesel and Rodi
(1977), Simpson and Chew (1979), and others have proposed techniques by which bias can be eliminated.
Studies done by Gould et al (1986) and Craig et al (1986) independently identified constant time interval
sampling as the only effective technique by which to remove bias due to both concentration and bias.
This was also found to be the case for two-component measurements by Nejad (1986). This technique
was to be utilized in the current work based on the above findings.

The constant time interval sampling technique can be implemented in two ways, during data acquisition
or after. The online approach involves inhibiting the processor in some manner for a fixed time period
and then allowing it to grab a single sample. The key to success in this approach is the seeding concentra-
tion. It must be high enough to ensure a scatterer will be in the probe volume every time the processor is
allowed to grab for a sample. A safer approach is to remove the bias offline. This approach requires the
time at which each scattering event occurred to be recorded. Subsequent to their acquisition, the data are
stepped through using different fixed time intervals until one is found which always contains data, yet is
long enough to minimize bias. There will be a range of time intervals that can be used to provide proper
elimination of bias.

It is expected that the flow fields with swirl may require correction, especially in the unconfined cases.
However, as shown in Table 3.5-I, the time tagging necessary to do this bias removal was not incorpo-
rated until late in the development of the instrument and could not really be utilized in the data collection
for this program.

3.5.4 Validation of Velocity Measurement

In order to validate the measurement of velocity, three approaches were taken: sensitivity studies, in-
strument comparisons, and mass balances. For the sensitivity tests, exit profiles were taken from the free
jet studied in this program and integrated. Instrument comparisons were conducted in order to verify
operation of the new instrument and correlate irregular behavior with the measurements obtained via an
independent source.
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The sensitivity studies were conducted to help quantify errors in the velocity measurements. In general,
the measurements were found to be reliable in terms of known mass balances. The fluctuating velocities
measured were found to be artificially high, primarily in regions of low turbulence (e.g., McDonell and
Samuelsen, 1990a; Jackson, 1990). This work led to improvements in the transmitter as described in sec-
tion 3.5.1.

As an example of both comparison and sensitivity studies, the setup shown in Figure 3.5.4-1 was used,
and measurements were conducted at the centerline of the free jet at an axial location of 2.0 mm. In this
case, the PDPA instrument was compared to TSI counters. In the setup, care was taken to ensure similar
setups of the two instruments (e.g., same processing criteria, same minimum fringe count).

An example of the results obtained in the sensitivity tests is shown in Figure 3.5.4-2 (a) which presents a
"cube plot” of the PDPA measurements as a function of four variables: PMT gain, filter selection, fre-
quency shift, and threshold. In this case, a two-level study was carried out as indicated on the extremes
of the cube axes, and the mean axial velocity, fluctuating axial velocity, and validation rate are examined
for dependency upon the four variables. The extremes were selected based upon experience, and would
be considered a good range of settings which should in theory provide accurate results. Figure 3.5.4-2 (a)
shows several important results. In general, little dependency of the mean velocity is observed, as ex-
pected. However, the fluctuating velocity shows significant dependency upon all four variables. From
Laufer (1954) and knowing the measured axial velocities, it is expected that the fluctuating velocity
should be 0.310 - 0.320 m/s. It is observed that minimization of PMT and frequency shift and increased
thresholds are necessary to reach these levels. PMT and threshold settings are expected to impact the re-
sults, but the extent to which this impact occurs is shown in Figure 3.54-2 (a). Further, the dependency
upon frequency shift stands out as inappropriate, as this quantity should be independent of the results.
This is an example of the problems with the gratings discussed in section 3.5.1. Fortunately, in higher
turbulence flows, this problem was not significant. These sensitivity tests help guide the instrument set-
tings and enhanced confidence in the results.

In addition, experiments were conducted which compared the measurements obtained by both PDPA
and other signal processors. A schematic of the setup used for this test is shown in Figure 3.5.4-1. In this
case, the PDPA system was compared directly to TSI counters. The PMT gain and filtering of signals was
done with the PDPA system. The TSI system was set up to mimic closely the PDPA system (i.e., using to-
tal burst mode, eight fringe minimum).

To complement the results shown in Figure 3.5.4-2 (a), Figure 3.5.4-2 (b) presents the cube plot for the TSI
system. The results show trends similar to those of the PDPA system. Noteworthy is that the validation
is lower than that of the PDPA. This is partially attributed to the inability of the TSI system used in this
study to utilize DMA. Also, the PDPA threshold had no influence on the TSI system. To emulate this
function, the TSI "gain" selector was used. A higher gain was used to reflect a lower threshold. Aninde-
pendent study of the impact of the gain on the TSI measurement was carried out and showed no impact
over the range used in this study.

The fluctuating velocities show trends similar to those of the PDPA. Recalling that the value should be
0.310 to 0.320 m/s, the increase in shift has a strong impact on the measured fluctuating velocity. It is ob-
served that the PMT setting has less impact on TSI than on PDPA.

The results from the sensitivity study indicate that PMT gain and frequency shift have the strongest im-
pact on the results measured by both the PDPA and TSI counters. As a result, these two parameters were

examined in more detail in a separate study. Examples of these results are shown in Figures 3.5.4-3 and
35.44.

Figure 3.5.4-3 presents, at the centerline of the jet, the dependency of the measured quantities upon PMT
gain setting. Figure 3.5.4-3 (a) presents the results for the axial velocity. At the lowest voltages, the TSI
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instrument measures a relatively high value. Increasing the voltage results in systematically increasing
PDPA values but fairly stable TSI values.

The fluctuating velocities are presented in Figure 3.5.4-4 (b). Both instruments exhibit little dependency
upon voltage until 550 volts is reached. At this level, both instruments measure slightly higher fluctuat-
ing velocities which increase with continued voltage increases.

The turbulence intensity is presented in Figure 3.5.44 (c), and it is observed that similar trends occur for
the fluctuating velocity. Departure from the expected values increases with higher voltages, but less so
for the TSI measurement. This result helps to dictate the maximum voltages that may be used and still
measure accurate fluctuating velocities.

The validation rate shown in Figure 3.5.4-4 (d) shows the expected increase with increased voltages. It is
tempting to increase the voltage in order to achieve higher data rates, but this leads to erroneous scores
and results in artificially high levels of turbulence, as indicated by Figure 3.5.4-3 (c).

An example of the impact of the PMT voltage is shown in Figure 3.5.4-4. Figure 3.5.4-4 (a) shows that the
TSI mean axial velocity increases systematically with shift. An exception is the value measured with no
shift, which like the PDPA result is locally high. The TSI dependency is attributed to shift/fringe spacing
mismatch in the TSI setup.

The fluctuating velocity (Figure 3.5.4-4 [b]) increases modestly with frequency shift for the TSI case, but
rather dramatically for the PDPA at shift values above 3.0 MHz.

The dependency of the turbulence intensity upon the frequency shift is shown in Figure 3.5.4-4 (c).
Again, the TSI equipment appears less sensitive to shift values than does the PDPA. However, at shift
values less than 3.0 MHz either processor gives reasonably accurate results.

The validation (Figure 3.5.4-4 [d]) reveals a systematic decrease for both instruments. Note that the TSI
dependency is nearly linear, whereas the PDPA result drops off quickly with increased shift.

The results show that the PDPA instrument is more sensitive to shift and PMT settings than is the TSI
instrument. However, if constraints are placed upon the settings, the PDPA instrument also obtains accu-
rate results. Although the TSI instrument is less sensitive in a velocity measurement mode, it cannot
measure size. More details regarding the checkout of the instrument are given in section 3.6.3 and in a
separate report which documents additional tests run (McDonell and Samuelsen, 1991).
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